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Abstract

Based on the continuum mechanics and a multiple-elastic beam model, the nonlinear free vibration of embedded multi-

wall carbon nanotubes considering intertube radial displacement and the related internal degrees of freedom is

investigated. By using the incremental harmonic balanced method, the iterative relationship of nonlinear amplitude and

frequency for the single-wall nanotube and double-wall nanotube are expressed. In the numerical calculation, the

amplitude frequency response curves of the nonlinear free vibration for the single-wall and double-wall nanotubes are

obtained. The effects of the surrounding elastic medium, van der Waals forces and aspect ratio of the multi-wall nanotubes

on the amplitude frequency response characteristics are discussed.

r 2006 Elsevier Ltd. All rights reserved.
1. Introduction

The discovery of carbon nanotubes (CNT) by Iijima [1], especially the discovery of the single-wall nanotube
(SWNT) and the successful composition of the CNT in the macrography scale, has received considerable
attention in recent years. At the present CNT has been the chief research subject in the area of the fullerene,
and it has been one of the most promising researches in the field of mechanics, physics, chemistry and
materials science, etc. Because of their novel electronic, mechanical, and other physical and chemical
properties, CNT holds substantial promise as building blocks for nanoelectronics, nanodevices, and
nanocomposites. For example, the stiffness of CNT is 100 times as that of the steel, but the weight is one-sixth
times as that of the steel [2]. It is foreseen to be the most promising one-dimensional nanophase materials in
the 21st century. Therefore, it is necessary and significant to study its mechanical property.

Various buckling and bending problems of CNT have been investigated by using experimental method and
molecular-dynamics simulations [3–9]. In many proposed applications and designs, CNTs are often embedded
in another elastic medium, therefore, considerable attention is focused on mechanical behaviors of CNTs
embedded in a polymer or metal matrix [7]. But the single-beam model used in these literatures neglects the
intertube radial displacement, the related internal degrees of freedom and van der Waals forces which
inevitably cause internal non-coaxial deformation and distort the otherwise concentric geometry of multi-wall
nanotube (MWNT). Especially, because each of the nested tubes of a MWNT could have different electronic
ee front matter r 2006 Elsevier Ltd. All rights reserved.
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properties, non-coaxial distortion could significantly affect some important physical properties of MWNT.
Therefore, it is necessary to understand intertube vibration of embedded MWNT. Based on the non-coaxial
vibrational model of MWNT, Ru [10] studied the bulking of nanotubes. Considering the intertube radial
displacement and the internal van der Waals forces, Yoon and Ru [11] analyzed the frequencies and models of
the linear free vibration for the embedded MWNT. To our knowledge, the nonlinear free vibration of
embedded nanotubes has not been studied in the literatures.

The deformations of nanostructure, such as CNTs, as the same as those of the macroscopic structures are
nonlinear in nature under the action of the external conditions. Only when taking into account the
nonlinearities in geometry and physics, the more static and dynamic properties of nanostructure can be
obtained and then the nanostructures can receive more wide applications. In this paper, the nonlinear free
vibration analysis of CNTs considering the geometric nonlinearity is investigated. The main reasons of
considering the nonlinearity and useful examples are as follows:

First, the nonlinear amplitude frequency response, the bifurcate and chaos of the nanostructure can be
investigated in the nonlinear model rather than in the linear model.

Second, the more precise mechanical properties can be obtained. For example, when measuring the Young’s
modulus of CNT by using the vibration method, the experiment value can be consistent with the theoretical
value only under considering the nonlinear deformation of CNT. Another case is that when weighing the
nanoscale materials by adopting the nano-steelyard, the more precise mass is obtained when taking into
account the geometric nonlinearity of CNT.

Moreover, the nonlinear mechanical behavior of CNT has received considerable attentions in recent years.
For example, Pantano and Boyce [12] investigated the effect of the characteristic wavelike or wrinkles on the
bending mode of CNT under considering the geometric nonlinearity and explained the phenomenon that the
curve modes of CNT decrease with the increase of the diameter of CNT.

In this paper, based on the continuum mechanics and a multiple-elastic beam model, the nonlinear free
vibration analysis of embedded CNT considering intertube radial displacement and the related internal
degrees of freedom is investigated.
2. Basic equations

There are two simplified methods in modeling CNTs based on the continuum mechanics at present. One is
to simplify every layer of the tube to contact the adjacent tube and the distance of the adjacent layer may be
neglected. In this model, the thickness t0 of the every layer of the tube is 0.34 nm and the Young’s modulus is
1.1 TPa. The other model is that the interlayer spacing between every adjacent tube is 0.34 nm and the
thickness of the tube t0 is 0.066 nm, the Young’s modulus is 5.5 TPa. The later is usually applied to the CNTs
with small aspect ratio and in this model, the tubes is treated as the shell [13]. In present research, the aspect
ratios of nanotubes are all beyond 10, so the former model is employed.

Consider a CNT of length l, Young’s modulus E, density r, cross-sectional area A, and cross-sectional
inertia moment I, embedded in elastic medium as shown in Fig. 1. Assume that the displacement of nanotube
along x axial is uðx; tÞ, and the displacement along z axial is wðx; tÞ in terms of the spatial coordinate x and the
time variable t. The free vibration equation of embedded nanotube considering the geometric nonlinearity of
x, u

z, w

y

O

l

k

Fig. 1. Model of an embedded carbon nanotube.
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the structure is

EI
d4w

dx4
þ rA

d2w

dt2
¼

EA

2l

Z l

0

qw

qx

� �
dx

� �
q2w
qx2
þ p, (1)

where pðx; tÞ is the interaction pressure per unit axial length between the outermost tube and the surrounding
medium, which can be described by the Winkler-like model [14,15], and

p ¼ �kw, (2)

where the negative sign indicates that the pressure p is opposite to the deflection of the outmost tube, and k is a
constant determined by the material constants of the surrounding elastic medium. Substituting Eq. (2) into
Eq. (1), that gives

EI
d4w

dx4
þ rA

d2w

dt2
þ kw ¼

EA

2l

Z l

0

qw

qx

� �
dx

� �
q2w

qx2
. (3)

Assume that the nanotube is simply supported at the two ends. So, the unknown function wðx; tÞ may be
given as

wðx; tÞ ¼W ðtÞsin
px

l
. (4)

It satisfies the boundary condition: x ¼ 0; l : w ¼ 0; M ¼ 0, in which M is the stress couple. By substituting
Eq. (4) into Eq. (3), the nonlinear differential equation for the time function W ðtÞ can be obtained as follows:

d2W

dt2
þ

p4EI

l4rA
þ

k

rA

� �
W þ

p4E

4l4r
W 3 ¼ 0. (5)

For the MWNT with N layers, the pressure at any point between any two adjacent tubes depends on the
difference of their deflections at that point. Thus the van der Waals force can be expressed as

Fi ¼ ciðwi � wi�1Þ, (6)

where Fi is the van der Waals force between the ith tube and the i�1th tube. ci is the coefficient of the van der
Waals force between the ith tube and the i�1th tube. And ci can be defined by [10]

ci ¼
200� ð2ri�1Þ erg=cm

2

0:16d2
ði ¼ 2; 3; . . . ;NÞ, (7)

in which d ¼ 0:142 nm, ri�1 is the radius of ith tube.
Assume that all nested individual tubes of the MWNT vibrate in the same plane. Considering the effects of

the van der Waals forces in Eq. (3), the coplanar transverse nonlinear free vibration of an embedded MWNT
with N layers is described by the following N coupled nonlinear differential equations:

EI1
d4w1

dx4
þ rA1

d2w1

dt2
¼

EA1

2l

Z l

0

qw1

qx

� �
dx

� �
q2w1

qx2
þ c1½w2 � w1�,

EI2
d4w2

dx4
þ rA2

d2w2

dt2
¼

EA2

2l

Z l

0

qw2

qx

� �
dx

� �
q2w2

qx2
þ c2½w3 � w2� � c1½w2 � w1�,

..

.

EIN

d4wN

dx4
þ rAN

d2wN

dt2
¼

EAN

2l

Z l

0

qwN

qx

� �
dx

� �
q2wN

qx2
� cN�1½wN � wN�1� � kwN . ð8Þ

By using the former simplified method for the MWNT having simply supported condition at the two ends, the
nonlinear vibration equations of an embedded MWNT with N layers can be written in term of the time
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function W iðtÞ as

d2W 1

dt2
þ

p4EI1

l4rA1

þ
c1

rA1

� �
W 1 þ

p4E

4l4r
W 3

1 �
c1

rA1
W 2 ¼ 0,

d2W 2

dt2
þ

p4EI2

l4rA2

þ
c1

rA2
þ

c2

rA2

� �
W 2 þ

p4E

4l4r
W 3

2 �
c1

rA2
W 1 �

c2

rA2
W 3 ¼ 0,

..

.

d2W N

dt2
þ

p4EIN

l4rAN

þ
cN�1

rAN

þ
k

rAN

� �
W N þ

p4E

4l4r
W 3

N �
cN�1

rAN

W N�1 ¼ 0. ð9Þ
3. Solution methodology

3.1. Solutions of SWNT

For a SWNT, the nonlinear vibration governing equation is given by Eq. (9) with N ¼ 1 as follows:

d2W

dt2
þ

p4EI

l4rA
þ

k

rA

� �
W þ

p4E

4l4r
W 3 ¼ 0. (10)

Introducing the dimensionless parameters: r ¼
ffiffiffiffiffiffiffiffiffi
I=A

p
, a ¼W=r, ol ¼ p2=l2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EI=rA

p
, ok ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
k=rA

p
, t ¼ ot,

substituting these into Eq. (10), the dimensionless nonlinear vibration governing equation is given as

o
ol

� �2
d2a

dt2
þ 1þ

ok

ol

� �2
" #

aþ aa3 ¼ 0, (11)

where a ¼ 0:25. Eq. (11) is the famous Duffing equation. Generally, the analytical solution of Eq. (11) is hard
to find out. In present analysis, a high precision method, the incremental harmonic balanced method [16] is
employed to seek the numerical solution of Eq. (11).

Assume a0ðtÞ and o0 to be a known vibration status, that is, they are the known solutions of Eq. (11). Then
a neighboring vibration status with the amplitude increment DaðtÞ and the frequency increment Do can be
expressed as

aðtÞ ¼ a0ðtÞ þ DaðtÞ; o ¼ o0 þ Do. (12)

Substituting Eq. (12) in Eq. (11) and neglecting the high-order microcontent, a linearized increment equation
can be expressed as

o0

ol

� �2
d2Da

dt2
þ 1þ

ok

ol

� �2
" #

Daþ 3aa2
0Da ¼ R� 2

o0

ol

� �
Do
ol

� �
d2a0

dt2
, (13)

where

R ¼ �
o0

ol

� �2
d2a0

dt2
� 1þ

ok

ol

� �2
" #

a0 � aa3
0 (14)

and it is the corrective term, that is, it will become zero if a0ðtÞ and o0 are the exact solutions of Eq. (11).
In order to seek the periodic solutions of Eq. (11), the functions a0ðtÞ and DaðtÞ can be taken in the form of

cosine harmonic wave as

a0 ¼ a1 cos tþ a3 cos 3tþ � � � ,

Da ¼ Da1 cos tþ Da3 cos 3tþ � � � . ð15Þ
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Substituting Eq. (15) in Eq. (13) and equating the coefficient of the same harmonic wave terms, the matrix
algebra equation can be got as follows:

ð½K� �
o0

ol

� �2

½M� þ
ok

ol

� �2

½P�Þ
Da1

Da3

( )
¼

R1

R3

" #
þ

Do
ol

� �
F1

F3

( )
, (16)

where

½K � ¼
K11 K13

K31 K33

" #
; ½M� ¼

m11 m13

m31 m33

" #
; ½P� ¼

p11 p13

p31 p33

" #
,

K11 ¼ 1þ
3

2
a

3

2
a2
1 þ a1a3 þ a2

3

� �
; K13 ¼

3

2
a

1

2
a2
1 þ 2a1a3

� �
; K31 ¼ K13; K33 ¼ 1þ

3

2
a a2

1 þ
3

2
a2
3

� �
,

m11 ¼ 1; m13 ¼ m31 ¼ 0; m33 ¼ 9; p11 ¼ 1; p13 ¼ p31 ¼ 0; p33 ¼ 1,

R1 ¼ � a1 �
3

4
a a2

1 þ a1a3 þ 2a2
3

� �
a1 þ

o0

ol

� �2

a1 �
ok

ol

� �2

a1,

R2 ¼ � a3 �
a
4

a3
1 þ 6a2

1a3 þ 3a2
3

� �
þ 9

o0

ol

� �2

a3 �
ok

ol

� �2

a3,

F1 ¼ 2
o0

ol

� �
a1; F 3 ¼ 18

o0

ol

� �
a3. ð17Þ

Eq. (16) can be solved for Da3 and Do for the given values of a1, a3 and o0 and for a given increment Da1 in
which the corresponding a1 is set to zero. Consequencely, the next vibration status a1 þ Da1, a2 þ Da2 and
oþ Do can be calculated. Then taking these solutions as a new vibration status and using the former solving
process, the nonlinear amplitude frequency response curves can be obtained.

3.2. Solution of double-wall nanotubes (DWNT)

For a DWNT, the nonlinear vibration governing equations are given by Eq. (9) with N ¼ 2 as follows:

d2W 1

dt2
þ

p4EI1

l4rA1

þ
c1

rA1

� �
W 1 þ

p4E

4l4r
W 3

1 �
c1

rA1
W 2 ¼ 0,

d2W 2

dt2
þ

p4EI2

l4rA2

þ
c1

rA2
þ

k

rA2

� �
W 2 þ

p4E

4l4r
W 3

2 �
c1

rA2
W 1 ¼ 0. ð18Þ

Introducing the following dimensionless parameters:

r ¼

ffiffiffiffiffiffi
I1

A1

r
; a1 ¼

W 1

r
; a2 ¼

W 2

r
; ol ¼

p2

l2

ffiffiffiffiffiffiffiffiffi
EI1

rA1

s
; ok ¼

ffiffiffiffiffiffiffiffiffi
k

rA1

s
; oc ¼

ffiffiffiffiffiffiffiffiffi
c

rA1

r
,

t ¼ ot; b ¼
A1

A2
; g ¼

I1

I2
; a ¼

1

4

and substituting these into Eq. (18), the dimensionless nonlinear vibration governing equations are

o
ol

� �2
d2a1

dt2
þ 1þ

oc

ol

� �2
" #

a1 þ aa3
1 �

oc

ol

� �2

a2 ¼ 0,

o
ol

� �2
d2a2

dt2
þ b

1

g
þ

oc

ol

� �2

þ
ok

ol

� �2
" #

a2 þ aa3
2 � b

oc

ol

� �2

a1 ¼ 0. ð19Þ

Also, the incremental harmonic balanced method is employed to seek solution of Eq. (19). Assume
a1ðtÞ; a2ðtÞ and o0 to be a known vibration status, then a neighboring vibration status with the amplitude
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increment Da1; Da2 and the frequency increment Do can be expressed as

a1ðtÞ ¼ a10ðtÞ þ Da1ðtÞ,

a2ðtÞ ¼ a20ðtÞ þ Da2ðtÞ,

o ¼ o0 þ Do. ð20Þ

Substituting Eq. (20) in Eq. (19) and neglecting the high-order microcontent, two linearized increment
equations can be expressed as

o0

ol

� �2
d2Da1

dt2
þ 1þ

oc

ol

� �2
" #

Da1 þ 3aa2
10Da1 �

oc

ol

� �2

Da2 ¼ R1 � 2
o0

ol

� �
Do
ol

� �
d2a10

dt2
,

o0

ol

� �2
d2Da2

dt2
þ b

1

g
þ

oc

ol

� �2

þ
ok

ol

� �2
" #

Da2 þ 3aa2
20Da2 � b

oc

ol

� �2

Da1 ¼ R2 � 2
o0

ol

� �
Do
ol

� �
d2a20

dt2
, ð21Þ

where

R1 ¼ �
o0

ol

� �2
d2a10

dt2
� 1þ

oc

ol

� �2
" #

a10 � aa3
10 þ

oc

ol

� �2

a20,

R2 ¼ �
o0

ol

� �2
d2a20

dt2
� b

1

g
þ

oc

ol

� �2

þ
ok

ol

� �2
" #

a20 � aa3
20 þ b

oc

ol

� �2

a10. ð22Þ

As the front method, the functions a10, Da10, a20, Da20 can be taken in the form of cosine harmonic wave as

a10 ¼ a1 cos tþ a3 cos 3tþ � � � ; Da10 ¼ Da1 cos tþ Da3 cos 3tþ � � � ,

a20 ¼ a2 cos tþ a4 cos 3tþ � � � ; Da20 ¼ Da2 cos tþ Da4 cos 3tþ � � � , ð23Þ

Substituting Eq. (23) into Eq. (21) and equating the coefficient of the same harmonic wave terms, the following
matrix algebra equations are obtained:

ð½K� þ ½W �Þ

Da1

Da2

Da3

Da4

8>>><
>>>:

9>>>=
>>>;
¼

R1

R2

R3

R4

2
6664

3
7775þ 2

Q1

Q2

Q3

Q4

2
66664

3
77775, (24)

where

½K � ¼

K11 K12 K13 K14

K21 K22 K23 K24

K31 K32 K33 K34

K41 K42 K43 K44

2
666664

3
777775,

K11 ¼ 1þ
9

4
aa2

1 þ
3

2
aa1a3 þ

3

2
aa2

3; K12 ¼ K14 ¼ 0; K13 ¼
3

4
aa2

1 þ 3aa1a3,

K21 ¼
3

4
aa2

1 þ 3aa1a3; K22 ¼ K24 ¼ 0; K23 ¼ 1þ
3

2
aa2

1 þ
9

4
aa2

3,

K31 ¼ K33 ¼ 0; K32 ¼
b
g
þ

9

4
aa2

2 þ
3

2
aa2a4 þ

3

2
aa2

4; K34 ¼
3

4
aa2

2 þ 3aa2a4,

K41 ¼ K43 ¼ 0; K42 ¼
3

4
aa2

2 þ 3aa2a4; K44 ¼
b
g
þ

3

2
aa2

2 þ
9

4
aa2

4,
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½W � ¼

�ð
o0
ol
Þ
2
þ ðoc

ol
Þ
2

�ðoc
ol
Þ
2 0 0

0 0 �9ð
o0
ol
Þ
2
þ ðoc

ol
Þ
2

�ðoc
ol
Þ
2

�bðoc
ol
Þ
2

�ð
o0
ol
Þ
2
þ bðoc

ol
Þ
2
þ bðok

ol
Þ
2 0 0

0 0 �bðoc
ol
Þ
2

�9ð
o0
ol
Þ
2
þ bðoc

ol
Þ
2
þ bðok

ol
Þ
2

2
666666664

3
777777775
,

R1 ¼ �
3

4
aa3

1 þ
3

4
aa2

1a3 þ a1 þ
3

2
aa1a2

3 � a2
oc

ol

� �2

� a1
o0

ol

� �2

þ a1
oc

ol

� �2
" #

,

R2 ¼ �
1

4
aa3

1 þ
3

2
aa2

1a3 þ a3 þ
3

4
aa2

3 � a4
oc

ol

� �2

� 9a3
o0

ol

� �2

þ a3
oc

ol

� �2
" #

,

R3 ¼ �
3

4
aa3

2 þ
3

4
aa2

2a4 þ
b
g

a2 þ
3

2
aa2

4 � a1b
oc

ol

� �2

� a2
o0

ol

� �2

þ a2b
oc

ol

� �2

þ a2b
ok

ol

� �2
" #

,

R4 ¼ �
1

4
aa3

2 þ
3

2
aa2

2a4 þ
b
g

a4 þ
3

4
aa2

4 � a3b
oc

ol

� �2

� 9a4
o0

ol

� �2

þ a4b
oc

ol

� �2

þ a4b
ok

ol

� �2
" #

,

Q1 ¼ a1
o0

ol

� �
Do
ol

� �
; Q2 ¼ 9a3

o0

ol

� �
Do
ol

� �
; Q3 ¼ a2

o0

ol

� �
Do
ol

� �
; Q4 ¼ 9a4

o0

ol

� �
Do
ol

� �
. ð25Þ

Using the same solving processor as front, the nonlinear amplitude frequency curves of the DWNT can be
determined.
4. Numerical results and discussion

4.1. The nonlinear amplitude frequency response of SWNT

Assume the linear free vibration frequency to be ob in Eq. (11), and o2
b ¼ o2

l þ o2
k: In the numerical

computation, the parameters of material and geometry are taken as E ¼ 1:1TPa, r ¼ 1:3� 103 kg=m3 [12],
l ¼ 45 nm, the outside diameter is d1 ¼ 3 nm, the inside diameter is d0 ¼ 2:32 nm.
0 0.5 1 1.5 2 2.5 3

1

1.1

1.2

1.3

1.4

1.5

1.6

�
/�

b

k=0

k=108

k=107

k=109

a

Fig. 2. Effect of spring constant k on nonlinear amplitude frequency response curves of SWNT.
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Table 1

The linear free vibration frequencies ob of SWNT in Fig. 2

k (N/m2) 0 107 108 109

ob (THz) 0.128 0.138 0.209 0.536

Y.M. Fu et al. / Journal of Sound and Vibration 296 (2006) 746–756 753
The amplitude frequency response curves of the SWNT are shown in Fig. 2 for different spring constant k.
In Fig. 2, o=ob is the ratio of nonlinear frequency to linear frequency, a ða ¼Wmax=r; r ¼

ffiffiffiffiffiffiffiffiffi
I=A

p
¼ 0:94 nmÞ

is the maximum dimensionless vibration amplitude. From Fig. 2, it is noted that the spring constant k of
surrounding elastic medium has a pronounced effect on the nonlinear amplitude frequency response curves of
SWNT. The nonlinear free vibration frequency of nanotubes rises rapidly with the increment of the vibration
amplitude when the stiffness of medium is relatively small (say ko107 N=m2 [11,17]), in which case the
variation of spring constant k has little effect on the response curves of SWNT. Consequently the effect of
surrounding elastic medium can be neglected when the medium is flexible (such as a polymer medium). But
following the increasing of k, the curves tend toward a flat line which indicates that the nonlinear vibration will
change to linear vibration when the stiffness is large enough (say k4109 N=m2 [11,17]). In this case, the
geometric nonlinearity of the structure deformation can be out of account.

In order to calculate the nonlinear free vibration frequency o for different k and a, the linear free vibration
frequencies ob are listed in Table 1.

4.2. The nonlinear amplitude frequency response of DWNT

The linear free vibration frequencies for DWNT are calculated [11] as follows:

o2
n1 ¼

1
2

an �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2n � 4bn

q� �
; o2

n2 ¼
1
2

an þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2n � 4bn

q� �
, (26)

where

an ¼
EI1l

4
n þ c

rA1
þ

EI2l
4
n þ cþ k

rA2
4

ffiffiffiffiffiffiffi
4bn

p
,

bn ¼
EI1EI2l

8
n

r2A1A2
þ cl4n

EI1 þ EI2

r2A1A2
þ k

EI1l
4
n þ c

r2A1A2
. ð27Þ

In the case of the DWNT with simply supported condition at the two ends, ln can be expressed as

lnl ¼ np. (28)

Take the lowest frequency in Eq. (26) as the foundational frequency, that is ob ¼ o11.
The nonlinear amplitude frequency response curves of DWNT are shown respectively in Figs. 3–5 for

different spring constant k, the coefficient of the van der Waals force c and the aspect ratio l=d2, where d2 is
the outside diameter of the outertube. In all figures, o=ob is the ratio of nonlinear frequency to linear
frequency, a ða ¼Wmax=r; r ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
I1=A1

p
¼ 0:71 nmÞ is the maximum dimensionless vibration amplitude, and

the parameters of material and geometry are E ¼ 1:1TPa, r ¼ 1:3� 103 kg=m3 [13].
In Fig. 3, c ¼ 0:3� 1012 N=m2 and the parameters of geometry are d2 ¼ 3 nm; l ¼ 45 nm. It can be seen

from Fig. 3 that the effect of spring constant on nonlinear vibration of DWNT is similar to that on those of
SWNT (Fig. 2). In Fig. 4, the parameters are k ¼ 1017 N=m2, d2 ¼ 3 nm; l ¼ 45 nm. It can be seen that the
nonlinear amplitude frequency response curves of the DWNTs are steep when the van der Waals forces are
small, but with the increment of the forces, the curves tend towards a flat curve. In Fig. 5, the parameters are
k ¼ 107 N=m2; c ¼ 0:3� 1012 N=m2; d2 ¼ 3 nm. It is observed that with the increment of the aspect ratio of
the nanotubes, the nonlinear vibrations frequencies of DWNTs decrease.

The linear free vibration frequencies ob for all cases are listed in Table 2, so it is convenient to calculate the
nonlinear free vibration frequency o for different k, c and l=d2 in Figs. 3–5.
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Fig. 3. Effect of spring constant k on nonlinear amplitude frequency response curves for DWNT.
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Fig. 4. Effect of coefficient of van der Waals forces c on nonlinear amplitude frequency response curves for DWNT.
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5. Conclusions

In this paper, based on the continuum mechanics and a multiple-elastic beam model, a nonlinear free
vibration analysis of embedded multiwall carbon nanotube considering intertube radial displacement and the
related internal degrees of freedom is investigated. And the effects of the surrounding elastic medium, van der
Waals forces and aspect ratio of the multiwall nanotubes on amplitude frequency response characteristics are
discussed.

The present numerical results reveal that the nonlinear free vibration of nanotubes is effected significantly
by surrounding elastic medium. The nonlinear free vibration frequency of nanotubes rises rapidly with the
increment of the amplitude when the stiffness of medium is relatively small, but the nonlinear vibration will
change to the linear vibration when the stiffness is large enough. The amplitude frequency response curves of
the double-wall nanotubes are steep when the van der Waals forces are small, but with the increment of the
forces, the curves tend towards a flat curve. The nonlinear vibration frequencies of double-wall nanotubes
decreases with the increment of the aspect ratio of the nanotubes.
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Fig. 5. Effect of aspect ratio l=d2 on nonlinear amplitude frequency response curves for DWNT.

Table 2

The linear free vibration frequencies ob of DWNT in Figs. 3–5

Fig. 3 Fig. 4 Fig. 5

k (N/m2) ob (THz) c (N/m2) ob (THz) l/d2 ob (THz)

0 0.116 0 0.096 10 0.586

107 0.122 107 0.109 20 0.151

108 0.170 108 0.120 30 0.076

109 0.410 109 0.122 40 0.054

1010 0.122 50 0.046
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